Stress-Assisted Corrosion (SAC) in Boiler Tubes

Preet M. Singh* and Steve Pawel®

* Institute of Paper Science & Technology at Georgia Tech, Atlanta, GA

@ Oak Ridge National Laboratory, Oak Ridge, TN

DOE Project #DE-FC07-01ID1443

Industrial Boilers

Stress Assisted Corrosion in Waterwall Tubes

Stress Assisted Corrosion/ Cracking

Waterside Cracks in Waterwall Tube Near Attachment Weld

Microstructure of Carbon Steel Near Weld Attachment

SAC in Recovery Boiler Tubes

Industrial Boilers and SAC

SAC is Experienced in Various Industrial Boilers

Survey Data from Hercules-BetzDearborn

Project Objective

To Clarify Mechanisms Involved in Stress Assisted Corrosion (SAC) of Boiler Tubes to Determine Key Parameters in its Mitigation and Control

- Microstructure
- Water Chemistry
- Stress
 - Residual Stresses Due to Welding
 - Operational Stresses

Project Team

- Oak Ridge National Laboratory Dr. Steve Pawel
- Institute of Paper Science and Technology Dr. Preet Singh
- Others
 - Lawrence Livermore National Laboratory Dr. Mike Quarry
- Industrial Partners

Dr. W.B.A. Sharp— MeadWestvaco Mr. Steve Lukezich — MeadWestvaco Mr. Paul B. Desch - ONDEO- Nalco Dr. Peter Gorog - Weyerhaeuser Company

Other Project Advisors

Dr. Barry Dooley – EPRI Dr. Jim Keiser - ORNL Mr. John Hainsworth – B&W Dr. Ray Vasudevan - International Paper Mr. Mike Cooper – Longview Inspections

Mr. Mel Esmacher - GE Specialty Materials Mr. Karl Morency – Georgia Pacific

Main Project Tasks

- Task 1: Laboratory Simulation of SAC FY 2003
 - [IPST]
- Task 2: Material Characterization FY 2003
 - [ORNL and IPST]
- Task 3: Evaluation of Stress Effects
 - [ORNL]
- Task 4: Evaluation of Environmental Effects
 - [IPST and ORNL]
- Task 5: Communication to US Industry
 - [IPST and ORNL]

Project Progress in FY2003

Task 1 – Laboratory Simulation of SAC

- Develop Recirculation-Loop Autoclave Setup to Simulate Boiler Tube Environment
- Water Chemistry Variables
 - Dissolved Oxygen
 - pH
 - Cl⁻, SO₄⁻², and Other Ions
 - Conductivity

Autoclave with Recirculation Loop

Capabilities of Recirculation Autoclave

- Temperature up to 340°C and Pressure up to 2000 psi
- Continuous Monitoring
 - pH, Dissolved Oxygen, Conductivity, and Redox Potential
- Electrochemical Measurements and Long Term Corrosion Tests
 - Stressed and Non- Stressed Samples
- Tests to Monitor the Formation and Stability of Magnetite Film on the Tube Material
- Crack Growth Under Different Stress Conditions
 - Wedge Loaded Pre-Cracked Specimens
 - Slow Strain Rate Tests

Task 2: Material Characterization

- Examine Tube Specimens Removed from Boilers
 - With and Without SAC
- Data-Mining with Project Partners Using Previous Inspection/Failure Analysis Reports

Task 2: Material Characterization

- Almost 900 Linear Feet Failed Tubes were Received From Weyerhaeuser and MeadWestvaco Mills
- Largest Panel was 20 Feet Long by Four Tubes Wide
- Tubes were Sectioned and Prepared for Failure Analysis
- Inner Surface had Oxide Scale
- Scale Thickness Varied from Less than 50 Microns to More than 500 Microns at Different Areas
- Cracks were Generally Packed with this Oxide Film
- Metallography Revealed Stress Assisted Corrosion in Numerous Welded Sections

Waterside Cracks in Waterwall Tube Near Attachment Weld

Stress Assisted Corrosion Under Welded

Joints on Inner Surface of Waterwall

Tubes

Oxide Scale on Failed Tubes

Oxide Scale on Water-Touched Tube Surface

Stress Assisted Corrosion Under Welded Sections

Role of C-Steel Microstructure on initiation of Stress Assisted Cracks

Role of C-Steel Microstructure on initiation of Stress Assisted Cracks

Role of C-Steel Microstructure on Initiation of Stress Assisted Cracks

Microhardness (VHN) of C-Steel Waterwall <u>Tubes in Area with SAC</u>

Microhardness (VHN) of C-Steel Waterwall Tubes in Area with SAC

Evaluation of Non-Destructive Techniques to Detect SAC

- Comprehensive Analysis of Boiler Tube Panels Includes
 NDE and Destructive Techniques
 - Guided (Longitudinal) Waves Introduced from Cold Side of Tube
 Panel
 - Circumferential Waves Introduced from Process Side of Tube Panel
 - Radiography with Standard and Specialized Film Placement.
 - Bright Light Borescope Evaluation of All 900 Feet of Tubing

Evaluation of Non-Destructive Techniques to Detect SAC

Circumferential Wave Instrument

Large Array Transducer Used for Longitudinal Wave Technique

Longitudinal Wave Technique

Small Transducer Used for Longitudinal Wave Technique

Results from NDE Evaluations

- NDE Techniques Selected were not Effective for Locating Oxide
 Accumulations or the Longitudinal Stress Assisted Cracking
- Circumferential Wave Technique has Geometry Limitations Near Most Attachment Welds
- Longitudinal Wave Technique Detects Only Circumferential Flaws and is Presently Insufficiently Sensitive
- Radiography was not Sufficiently Sensitive, Especially Near Attachments.
- Right-Angle Borescope Viewing could not Distinguish Oxide Accumulation

Evaluation of Non-Destructive Techniques to Detect SAC

- Panels were Cut Longitudinally to Facilitate Visual Inspection
- Metallography of Specimens from Areas With and
 Without Attachment Welds Revealed SAC Cracks
- None of the Cracks Detected from Metallography were
 Detected by Selected NDE Techniques

Project Status Summary

Task	Milestone.	Planned	Actual	Comments
ID)	Wittestone	Completion	Completion	Comments
1.0)	Lab simulation of SAC	Completion	Comprehen	
1.1	Establish autoclaye operation	April 2003	Completed	Autoclaye and heaters are
	- Carrier of	⁴ ApH1-2005	Completed	working satisfactorily
1.2	Develop tensile test rig	August 2003		
11.33	Simulate SAC in lab tests	Sept. 2004		
11.44	Oxide growth experiments	Sept ₂₀₀₄		
2.0)	Material characterization			
2.1	Examine tubes with SAC	Sept. 2003	In-progress.	Various tubes were received and were examined at ORNL and IPST
2,2	Document inspection reports	Dec. 2003	In-progress	
2.3	Inspections to assess SAC rate	Sept. 2004		
3.0)	Evaluation of stress effects			
3.1	Document failure reports	April 2003	In-progress	Some data was received and is being reviewed. Required information is missing in most cases.
3.2	Deploy, field strain gages	Dec. 2003		
3.3	Model internal stress/strains			
4.0)	Environmental effects			
41	Assess key chemistry data	Mar. 2004		
42	Deploy on-line monitoring	April 2004		
43	Document effect of cleaning	Sept. 2003		
5,0	Communication to US industry			Presentations were made at TAPPI and NACE meetings and appropriate Committees attended by US industry reps.
5.1	Technical review meetings	Every six months	In-progress	Second meeting will be held in June 2003
5,2	Special topic workshops	Once a year		
5,3	Finalreport	Feb, 2005		

Future Tasks

- Task 3: Evaluation of Stress Effects
 - Finite Element Modeling of Stresses due to Welding and Operation on Carbon Steel and Composite Tubes - ORNL
- Task 4: Evaluation of Environmental Effects
 - Tests in Recirculation Autoclave to Evaluate Relative Effects of Important Operating Parameters
- Task 5: Communication to US Industry
 - Through Seminars, Target Workshops, and Publications

Roadmap for Commercialization

- Key Findings Will be Shared and Implemented Via Technical Symposia Targeted to
 - Boiler Manufacturers
 - Water Treatment Companies
 - Boiler Owners
 - Consultants
- Publications and Presentations

Energy Benefits

- Increase Energy Efficiency Simply by Decreasing the Frequency and Duration of Maintenance Outages.
- Will Prevent Catastrophic/Emergency Shut-downs of Operating Boilers
- By Increasing Boiler Operation Time and Efficiency by Just 0.5%
- Energy Savings Calculations were Based on the Roadmap for Process Heating Technology
 - sponsored by the Industrial Equipment Association and the U.S. Department of Energy, Office of Industrial Technologies, March 16, 2001

Energy Savings

Impact by the year 2020							
ENERGY SAVINGS	Electricity	Gas	Oil	Coal	Total Energy Savings		
Vision	[billion	[billion	[million	[million	[trillion		
Industry	kWh]	ft3]	barrels	tons	BTU's		
Petrochemical	0.13	4.0	0.05	0.04	6.25		
Chemical	80.0	2.3	0.025	0.01	5.5		
Other Manf.	0.07	2.2	0.025	0.01	5.0		
Metal	0.05	1.8	0.02	0.01	2.5		
Glass	0.07	2.0	0.02	0.01	3.0		
Paper	0.02	0.05	0.002	.003	0.75		
Total Savings	0.42	12.4	0.14	0.083	23		

Energy Impact (in Dollars)

Impact by the Year 2020					
Energy Cost Savings Vision Industry	Energy Savings [Million \$/Year]				
Petrochemical	48				
Chemical	28				
Other Manufacturing	25				
Metal	12				
Glass	15				
Paper	5				
Total	133				

Environmental Impact

Impact by the Year 2020						
Environmental	[Thousand tons/year]					
Savings	CO_2	NO_x				
Petrochemical	100	0.9				
Chemical	60	0.5				
Other Manf.	50	0.45				
Metal	40	0.35				
Glass	48	0.4				
Paper	12	0.1				
Total	310	2.7				

